推荐新闻
联系方式
全国服务热线:189-2252-5500
联系人: 凌生 电话:135-0981-1191 地址:广东省东莞市长安镇新岗路114号7栋4楼
历史记录
EnvisionTEC设备介绍-3D-Bioplotter打印机系列
来源:乐动ldsports(中国)股份有限公司 发布时间:2018-08-07 点击量:2195
3D-Bioplotter生物打印系统是一种可采用多种生物材料的快速成型设备,利用三维CAD模型和患者的CT扫描数据打印出实体3D生物材料相容性结构,其制作的生物打印模型具有符合设计要求的外在形式和开放性的内在结构。
3D Bioplotter系统通过控制打印材料筒在三维空间的移动,将处于流体、熔融、胶体或糊状的材料通过气压挤出,材料通过层层堆积后成型出不同形状的模型,从而完成3D打印过程。
生物工程和药物控释都要求3D生物支架具备良好的外在和内在结构。目前在3D-Bioplotter系统制作的生物支架所运用的材料范围最广,包括聚合物熔体、凝胶、陶瓷、金属等等。
骨骼再生:羚基磷灰石(Hydroxyapa-tite)、钛(Titanium)、磷酸三钙(Tricalcium Phos-phate)
药物控释:聚已磷内酯(PCL)、聚乳酸(PLLA)、乳酸-羚基乙酸共聚物(PLGA)
软组织生物结构/器官打印:琼脂(Agar)、聚氨基葡萄糖(Chitosan)、藻朊酸盐(Alginate)、明胶(Gela-tine)、骨胶原(Colla-gen)、纤维蛋白(Fibrin)
概念模型:聚氨基甲酸乙酯(Polyure-thane)、硅酮(Silicone)
后处理烧结:羚基磷灰石,磷酸三甲苯酯,钛
沉淀:聚氨基葡萄糖,骨胶原
双组件结构:藻朊酸盐,纤维蛋白,聚氨酯,硅酮
液态到固态的相转变过程:琼脂,明胶,聚已酸内酯,乳酸-羚基乙酸共聚物,聚乳酸
在组织工程(Tissue Engineering)领域,一个很重要的问题就是植入体、支架的结构和力学性能能够与再生的人体器官想类似,而传统制造技术难以控制支架的力学结构和性能。使用3DF技术(三维纤维沉积技术)制造的新型生物支架在组织工程应用方面表现出来极大的潜力,具体体现重复制作的精确性、生物相容性,和不受形状和尺寸大小影响的多孔结构,而且所有内部孔洞都是100%相同的。
目前,以3D-Bioplotter®生物打印机为基础的科学研究取得了丰富的成果,这不仅给生物3D打印的应用提供了强大的理论支持,也给材料学与生命科学的发展提供了新的研究思路。截止至2017年4月,已发表的论文多达189篇,论文质量高,出版杂志主要包括了The Lancet(IF=44.002)、Advanced Functional Materials(IF=11.382)、Biomaterials(IF=8.387)等顶级期刊。
3D-Bioplotter系列机型介绍
3D-Bioplotter打印原理
3D Bioplotter系统通过控制打印材料筒在三维空间的移动,将处于流体、熔融、胶体或糊状的材料通过气压挤出,材料通过层层堆积后成型出不同形状的模型,从而完成3D打印过程。
产品特点
1.能够直接使用工业原料(如粉状或颗粒状材料),而非经过预处理的线材;
2.能够使用医疗材料进行打印;
3.专门为无菌要求而设计的无菌滤网,过滤加压用气体,保证材料的生物安全性;
4.材料存储在无菌材料腔中,避免与机器直接接触,保证材料不被污染;
5.支持用户自定义打印参数;
6.任何可以通过化学或者物理过程固化的材料,都可能作为打印材料;
7.广泛的材料选择为3D打印提供无限可能
代表材料
生物工程和药物控释都要求3D生物支架具备良好的外在和内在结构。目前在3D-Bioplotter系统制作的生物支架所运用的材料范围最广,包括聚合物熔体、凝胶、陶瓷、金属等等。
骨骼再生:羚基磷灰石(Hydroxyapa-tite)、钛(Titanium)、磷酸三钙(Tricalcium Phos-phate)
药物控释:聚已磷内酯(PCL)、聚乳酸(PLLA)、乳酸-羚基乙酸共聚物(PLGA)
软组织生物结构/器官打印:琼脂(Agar)、聚氨基葡萄糖(Chitosan)、藻朊酸盐(Alginate)、明胶(Gela-tine)、骨胶原(Colla-gen)、纤维蛋白(Fibrin)
概念模型:聚氨基甲酸乙酯(Polyure-thane)、硅酮(Silicone)
3D-Bioplotter材料制备与固化过程
后处理烧结:羚基磷灰石,磷酸三甲苯酯,钛
沉淀:聚氨基葡萄糖,骨胶原
双组件结构:藻朊酸盐,纤维蛋白,聚氨酯,硅酮
液态到固态的相转变过程:琼脂,明胶,聚已酸内酯,乳酸-羚基乙酸共聚物,聚乳酸
在组织工程(Tissue Engineering)领域,一个很重要的问题就是植入体、支架的结构和力学性能能够与再生的人体器官想类似,而传统制造技术难以控制支架的力学结构和性能。使用3DF技术(三维纤维沉积技术)制造的新型生物支架在组织工程应用方面表现出来极大的潜力,具体体现重复制作的精确性、生物相容性,和不受形状和尺寸大小影响的多孔结构,而且所有内部孔洞都是100%相同的。
科研成果
目前,以3D-Bioplotter®生物打印机为基础的科学研究取得了丰富的成果,这不仅给生物3D打印的应用提供了强大的理论支持,也给材料学与生命科学的发展提供了新的研究思路。截止至2017年4月,已发表的论文多达189篇,论文质量高,出版杂志主要包括了The Lancet(IF=44.002)、Advanced Functional Materials(IF=11.382)、Biomaterials(IF=8.387)等顶级期刊。
推荐资讯MORE+
- 3D-Bioplotter系列生物3D打印机助力组织工程与生物制造研究,成为生物打印行业标杆 2019-11-08
- EnvisionTEC 3D-Bioplotter生物3D打印在民兵高中的研究应用 2018-06-15